Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Cell Mol Life Sci ; 80(8): 207, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452879

RESUMO

The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.


Assuntos
Neoplasias , Proteínas PrPC , Doenças Priônicas , Príons , Humanos , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Doenças Priônicas/metabolismo , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Neoplasias/genética , Biologia , Proteínas PrPC/genética , Proteínas PrPC/metabolismo
2.
FEBS Open Bio ; 13(2): 323-340, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579897

RESUMO

The incidence and mortality rates of cancer are growing rapidly worldwide, with lung cancer being the most commonly occurring cancer in males. Human carcinomas circumvent the inhibitory pathways induced by DNA damage and senescence through the upregulation of telomerase activity. The 37 kDa/67 kDa laminin receptor (LRP/LR) is a cell surface receptor which plays a role in several cancer hallmarks, including metastasis, angiogenesis, cell viability maintenance, apoptotic evasion, and mediating telomerase activity. We have previously shown that the knockdown of LRP/LR with an LRP-specific siRNA significantly impedes adhesion and invasion, induces apoptosis, and inhibits telomerase activity in various cancer cell lines in vitro. Here, we investigated the effect of downregulating LRP/LR with LRP-specific siRNA in A549 lung cancer cells. Downregulation of LRP/LR resulted in a significant decrease in cell viability, migration potential, and telomerase activity, as well as a significant increase in apoptosis. Proteomic analysis further suggested the re-establishment of immune control over the lung cancer cells, a previously unidentified facet of LRP downregulation in cancer. Altogether, we suggest that targeting LRP/LR for downregulation may have therapeutic potential for inhibiting several cancer hallmarks.


Assuntos
Neoplasias Pulmonares , Telomerase , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Regulação para Baixo/genética , Telomerase/genética , Telomerase/metabolismo , Proteômica , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Neoplasias Pulmonares/genética , Moléculas de Adesão Celular/genética
3.
FEBS Lett ; 596(22): 2914-2927, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35971617

RESUMO

Previous studies have shown that amyloid-ß oligomers (AßO) bind with high affinity to cellular prion protein (PrPC ). The AßO-PrPC complex binds to cell-surface co-receptors, including the laminin receptor (67LR). Our current studies revealed that in Neuroscreen-1 cells, 67LR is the major co-receptor involved in the cellular uptake of AßO and AßΟ-induced cell death. Both pharmacological (dibutyryl-cAMP, forskolin and rolipram) and physiological (pituitary adenylate cyclase-activating polypeptide) cAMP-elevating agents decreased cell-surface PrPC and 67LR, thereby attenuating the uptake of AßO and the resultant neuronal cell death. These cAMP protective effects are dependent on protein kinase A, but not dependent on the exchange protein directly activated by cAMP. Conceivably, cAMP protects neuronal cells from AßO-induced cytotoxicity by decreasing cell-surface-associated PrPC and 67LR.


Assuntos
Peptídeos beta-Amiloides , Proteínas PrPC , Peptídeos beta-Amiloides/metabolismo , Proteínas Priônicas , Proteínas PrPC/metabolismo , Laminina/metabolismo , Morte Celular , Receptores de Laminina/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase
4.
Cancer Biomark ; 35(1): 99-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35912727

RESUMO

BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.


Assuntos
Lisina-tRNA Ligase , Neoplasias Ovarianas , Animais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Moléculas de Adesão Celular , Feminino , Humanos , Lisina-tRNA Ligase/metabolismo , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/genética
5.
Food Funct ; 13(8): 4421-4431, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35302141

RESUMO

Prostate cancer is a major cause of morbidity and mortality in men. Theaflavin-3,3'-digallate (TF-3) is an important functional ingredient of black tea. We aimed to evaluate the cytotoxic effects of TF-3 on prostate cancer and to identify the underlying molecular mechanism. In this study, we explored the effects of TF-3 on prostate cancer in PC-3 cells and in NOD/SCID mice with prostate cancer. The results demonstrated that TF-3 inhibited prostate cancer cell proliferation by regulating the PKCδ/aSMase signaling pathway. The anti-prostate cancer effect of TF-3 was attributed to the expression of the 67 kDa laminin receptor (67LR), which is overexpressed in various cancers, playing a vital role in the growth and metastasis of tumor cells. Stable knockdown of 67LR could efficiently inhibit TF-3 induced apoptosis and cell cycle arrest in PC-3 cells, through interacting with the PKCδ/aSMase signaling pathway. In vivo studies also confirmed the above findings that TF-3 effectively inhibited tumor growth in terms of tumor volume. TF-3 treatment can significantly inhibit tumor growth and up-regulate the phosphorylation of PKCδ and the expression of aSMase in tumor xenografts developed by subcutaneously implanting PC-3 cells and 67LR-overexpressing PC-3 cells in mice. However, in tumor xenografts formed by subcutaneously implanting 67LR-knockdown PC-3 cells, TF-3 has no significant effect on PKCδ/aSMase pathway regulation and tumor growth inhibition.


Assuntos
Catequina , Neoplasias da Próstata , Animais , Antioxidantes/farmacologia , Biflavonoides , Catequina/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Transdução de Sinais
6.
BMC Cancer ; 21(1): 392, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836696

RESUMO

BACKGROUND: The 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in several tumourigenic-promoting processes including cellular viability maintenance and apoptotic evasion. Thus, the aim of this study was to assess the molecular mechanism of LRP/LR on apoptotic pathways in late stage (DLD-1) colorectal cancer cells upon siRNA-mediated down-regulation of LRP/LR. METHODS: siRNAs were used to down-regulate the expression of LRP/LR in DLD-1 cells which was assessed using western blotting and qPCR. To evaluate the mechanistic role of LRP/LR, proteomic analysis of pathways involved in proliferation and apoptosis were investigated. The data from the study was analysed using a one-way ANOVA, followed by a two-tailed student's t-test with a confidence interval of 95%. RESULTS: Here we show that knock-down of LRP/LR led to significant changes in the proteome of DLD-1 cells, exposing new roles of the protein. Moreover, analysis showed that LRP/LR may alter components of the MAPK, p53-apoptotic and autophagic signalling pathways to aid colorectal cancer cells in continuous growth and survival. Knock-down of LRP/LR also resulted in significant decreases in telomerase activity and telomerase-related proteins in the DLD-1 cells. CONCLUSIONS: These findings show that LRP/LR is critically implicated in apoptosis and cell viability maintenance and suggest that siRNA-mediated knock-down of LRP/LR may be a possible therapeutic strategy for the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Técnicas de Silenciamento de Genes , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Transdução de Sinais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Proteoma , Proteômica/métodos , RNA Interferente Pequeno/genética , Telomerase/metabolismo , Transcriptoma , Células Tumorais Cultivadas
7.
EBioMedicine ; 65: 103251, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33639401

RESUMO

BACKGROUND: The presence of no-reflow can increase the risk of major adverse cardiac events and is widely regarded as an important sign of serious prognosis. Previous studies show that laminin receptor (LR) is closely related to the morphology and function of microvessels. However, whether LR is involved in the occurrence and development of no-reflow is still unknown. METHODS: In vivo, positron emission tomography (PET) perfusion imaging was performed to detect the effects of intramyocardial gene (LR-AAV and LR-siRNA-AAV) delivery treatment on the degree of no-reflow. In vitro, LC-MS/MS analysis was conducted to identify the LR phosphorylation sites of human cardiac microvascular endothelial cells (HCMECs) treated with oxygen-glucose deprivation (OGD) for 4 h. Western blot analyses were used to evaluate the phosphorylation levels of LR at residues Tyr47 (phospho-Tyr47-LR/pY47-LR) and Thr125 (phospho-Thr125-LR/pT125-LR) and their effects on the phosphorylation of VE-cadherin residue Ser665 (phospho-Ser665-VE-cad). FINDINGS: LR over-expression, LRT125A (phosphonull) and LRY47A (phosphonull) treatments were found to reduce the level of phospho-Ser665-VE-cad, and subsequently maintain adherent junctions and endothelial barrier integrity in hypoxic environments. Mechanistically, TIMAP/PP1c can combine with LR on the cell membrane to form a novel LR-TIMAP/PP1c complex. The level of pY47-LR determined the stability of LR-TIMAP/PP1c complex. The binding of TIMAP/PP1c on LR activated the protein phosphatase activity of PP1c and regulated the level of pT125-LR. INTERPRETATION: This study demonstrates that low level of phospho-LR reduces no-reflow area through stabilizing the LR-TIMAP/PP1c complex and promoting the stability of adherens junctions, and may help identify new therapeutic targets for the treatment of no-reflow.


Assuntos
Proteínas de Membrana/metabolismo , Proteína Fosfatase 1/metabolismo , Receptores de Laminina/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Fosforilação , Ligação Proteica , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Laminina/antagonistas & inibidores , Receptores de Laminina/genética , Transdução de Sinais
8.
Biomed Res Int ; 2020: 3280530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964027

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most highly aggressive cancer worldwide with an extremely poor prognosis. Evidence has revealed that microRNA-587 (miR-587) is abnormally expressed in a series of cancers. However, its expressions and functions in HCC have not been clearly acknowledged. METHODS: We detected the expression level of miR-587 both in the Gene Expression Omnibus (GEO) database and 86 paired clinical HCC tissues together with paired adjacent normal tissues by quantitative real-time PCR (qRT-PCR). Afterwards, the transfected HCC cell line SMMC-7721 cells were collected for the cell proliferation assay, cell-cycle arrest, cell migration, and invasion assays to explore the roles of miR-587 in regulating cellular function. In addition, bioinformatics analysis, combined with qRT-PCR and dual-luciferase reporter assays, were performed to confirm whether ribosomal protein SA (RPSA) mRNA was the direct target gene of miR-587. Moreover, the Cancer Genome Atlas (TCGA) and GEO databases as well as 86 paired clinical HCC tissues were used to verify the negative regulation between miR-587 and RPSA. RESULTS: In the present study, both the GEO database (GSE36915 and GSE74618) analysis and qRT-PCR analysis of 86 paired clinical tissues showed that miR-587 was significantly downregulated in HCC tissues. The overexpression of miR-587 inhibited proliferation, cell cycle, migration, and invasion in SMMC-7721 cells. In addition, miR-587 directly interacted with the 3'-untranslated region (UTR) of RPSA. Moreover, miR-587 overexpression directly suppressed RPSA expression, and the two genes were inversely expressed in HCC based on the analyses in TCGA and GEO (GSE36376) databases and qPCR analysis of 86 paired clinical tissues. CONCLUSION: Our results demonstrate that miR-587 is downexpressed in HCC and regulates the cellular function by targeting RPSA.


Assuntos
Carcinoma Hepatocelular/genética , Genes Supressores de Tumor/fisiologia , Neoplasias Hepáticas/genética , MicroRNAs/genética , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , RNA Mensageiro/genética
9.
Am J Physiol Heart Circ Physiol ; 319(1): H183-H191, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32469637

RESUMO

In pulmonary hypertension (PH) a proinflammatory milieu drives pulmonary vascular remodeling, maladaptive right ventricular (RV) remodeling, and right-sided heart failure. There is an unmet need for RV-targeted pharmaco-therapies to improve mortality. Targeting of the P2X7 receptor (P2X7R) reduces pulmonary pressures; however, its effects on the RV are presently unknown. We investigated the effect of P2X7 receptor (P2X7R) inhibition on the pulmonary vasculature and RV remodeling using the novel P2X7R antagonist PKT100. C57BL/6 mice were administered intratracheal bleomycin or saline and treated with PKT100 (0.2 mg·kg-1·day-1) or DMSO vehicle. RV was assessed by right heart catheterization and echocardiography, 21 days posttreatment. Cytokines in serum and bronchoalveolar lavage fluid (BALF) were analyzed by ELISA and flow cytometry. Lungs and hearts were analyzed histologically for pulmonary vascular and RV remodeling. Focused-PCR using genes involved in RV remodeling was performed. Right ventricular systolic pressure (RVSP) was elevated in bleomycin-treated mice (30.2 ± 1.1; n = 7) compared with control mice (23.5 ± 1.0; n = 10; P = 0.008). PKT100 treatment did not alter RVSP (32.4 ± 1.8; n = 9), but it substantially improved survival (93% vs. 57% DMSO). There were no differences between DMSO and PKT100 bleomycin mice in pulmonary inflammation or remodeling. However, RV hypertrophy was reduced in PKT100 mice. Bleomycin decreased echocardiographic surrogates of RV systolic performance, which were significantly improved with PKT100. Four genes involved in RV remodeling (RPSA, Rplp0, Add2, and Scn7a) were differentially expressed between DMSO and PKT100-treated groups. The novel P2X7R inhibitor, PKT100, attenuates RV hypertrophy and improves RV contractile function and survival in a mouse model of PH independently of effects on the pulmonary vasculature. PKT100 may improve ventricular response to increased afterload and merits further investigation into the potential role of P2X7R antagonists as direct RV-focused therapies in PH.NEW & NOTEWORTHY This study demonstrates the therapeutic potential for right-sided heart failure of a novel inhibitor of the P2X7 receptor (P2X7R). Inflammatory signaling and right ventricular function were improved in a mouse model of pulmonary fibrosis with secondary pulmonary hypertension when treated with this inhibitor. Importantly, survival was also improved, suggesting that this inhibitor, and other P2X7R antagonists, could be uniquely effective in right ventricle (RV)-targeted therapy in pulmonary hypertension. This addresses a major limitation of current treatment options, where the significant improvements in pulmonary pressures ultimately do not prevent mortality due to RV failure.


Assuntos
Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Animais , Pressão Sanguínea , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/sangue , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Remodelação Ventricular , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
10.
mSphere ; 5(2)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238570

RESUMO

Treponema pallidum subsp. pallidum is the causative agent of syphilis, a human-specific sexually transmitted infection that causes a multistage disease with diverse clinical manifestations. Treponema pallidum undergoes rapid vascular dissemination to penetrate tissue, placental, and blood-brain barriers and gain access to distant tissue sites. The rapidity and extent of T. pallidum dissemination are well documented, but the molecular mechanisms have yet to be fully elucidated. One protein that has been shown to play a role in treponemal dissemination is Tp0751, a T. pallidum adhesin that interacts with host components found within the vasculature and mediates bacterial adherence to endothelial cells under shear flow conditions. In this study, we further explore the molecular interactions of Tp0751-mediated adhesion to the vascular endothelium. We demonstrate that recombinant Tp0751 adheres to human endothelial cells of macrovascular and microvascular origin, including a cerebral brain microvascular endothelial cell line. Adhesion assays using recombinant Tp0751 N-terminal truncations reveal that endothelial binding is localized to the lipocalin fold-containing domain of the protein. We also confirm this interaction using live T. pallidum and show that spirochete attachment to endothelial monolayers is disrupted by Tp0751-specific antiserum. Further, we identify the 67-kDa laminin receptor (LamR) as an endothelial receptor for Tp0751 using affinity chromatography, coimmunoprecipitation, and plate-based binding methodologies. Notably, LamR has been identified as a receptor for adhesion of other neurotropic invasive bacterial pathogens to brain endothelial cells, including Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, suggesting the existence of a common mechanism for extravasation of invasive extracellular bacterial pathogens.IMPORTANCE Syphilis is a sexually transmitted infection caused by the spirochete bacterium Treponema pallidum subsp. pallidum. The continued incidence of syphilis demonstrates that screening and treatment strategies are not sufficient to curb this infectious disease, and there is currently no vaccine available. Herein we demonstrate that the T. pallidum adhesin Tp0751 interacts with endothelial cells that line the lumen of human blood vessels through the 67-kDa laminin receptor (LamR). Importantly, LamR is also a receptor for meningitis-causing neuroinvasive bacterial pathogens such as Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae Our findings enhance understanding of the Tp0751 adhesin and present the intriguing possibility that the molecular events of Tp0751-mediated treponemal dissemination may mimic the endothelial interaction strategies of other invasive pathogens.


Assuntos
Adesinas Bacterianas/metabolismo , Células Endoteliais/microbiologia , Interações Hospedeiro-Patógeno/genética , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Treponema/patogenicidade , Aderência Bacteriana , Linhagem Celular , Células Cultivadas , Humanos
11.
Biochem Biophys Res Commun ; 525(4): 974-981, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32173528

RESUMO

Targeting proteins that are overexpressed in cancer cells is the major strategy of molecular imaging and drug delivery systems. The 67-kDa laminin receptor (67LR), also known as oncofetal antigen, is overexpressed in several types of cancer, including melanoma, multiple myeloma, cervical cancer and bile duct carcinoma. 67LR is involved in tumour growth, tumour metastasis and drug resistance. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) directly binds to cell-surface 67LR and induces apoptosis through the protein kinase B (Akt)/endothelial nitric oxide synthase/nitric oxide/cyclic GMP (cGMP) axis. Here we report the optimum hydroxyl group for the utilization of EGCG as a novel fluorescent EGCG-mimic imaging probe based on 67LR agonist characters, including Akt activation and inhibitory effect on viable cell number in cancer cells. 67LR specific targeting is unambiguously confirmed with the use of a non-labelled EGCG competitive assay and 67LR knockdown. Importantly, this probe strongly binds to multiple myeloma cells compared with its binding to normal cells.


Assuntos
Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Catequina/análogos & derivados , Mieloma Múltiplo/metabolismo , Receptores de Laminina/metabolismo , Animais , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Fluorescência , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mieloma Múltiplo/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Laminina/agonistas , Receptores de Laminina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
12.
Mol Nutr Food Res ; 64(7): e1901036, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978263

RESUMO

SCOPE: Epigallocatechin gallate (EGCG), an active polyphenol in green tea, exhibits various physiological effects, including activation of low-density lipoprotein receptors (LDLR). The previous studies have suggested that EGCG activates LDLR via extracellular signal-regulated kinase (ERK) pathway in HepG2 cells. However, the detailed molecular mechanism remains unclear. Recently, 67 kDa laminin receptor (67LR) is identified as a receptor for EGCG. Therefore, this study aims to determine whether 67LR is involved in the mechanism of LDLR activation by EGCG. METHODS AND RESULTS: EGCG induces upregulation of LDLR when 67LR is knocked down in HepG2 cells. Similar effect is observed after the cells are treated with 67LR monoclonal antibody. The loss of antiallergic effect following 67LR siRNA knockdown and 67LR antibody treatment confirms the results since the antiallergic effect of EGCG is known to be mediated by 67LR. CONCLUSION: EGCG activates LDLR expression via 67LR-independent pathway in HepG2 cells.


Assuntos
Catequina/análogos & derivados , Receptores de LDL/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/metabolismo , Anticorpos/farmacologia , Catequina/farmacologia , Colesterol/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Receptores de LDL/genética , Receptores de Laminina/genética , Receptores de Laminina/imunologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/imunologia , Regulação para Cima/efeitos dos fármacos
13.
Hum Mutat ; 41(1): 196-202, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498527

RESUMO

Idiopathic intestinal varicosis is a developmental disorder defined by dilated and convoluted submucosal veins in the colon or small bowel. A limited number of families with idiopathic intestinal varices has been reported, but the genetic cause has not yet been identified. We performed whole-exome and targeted Sanger sequencing of candidate genes in five intestinal varicosis families. In four families, mutations in the RPSA gene were found, a gene previously linked to congenital asplenia. Individuals in these pedigrees had intestinal varicose veins and angiodysplasia, often in combination with asplenia. In a further four-generation pedigree that only showed intestinal varicosities, the RPSA gene was normal. Instead, a nonsense mutation in the homeobox gene NKX2-3 was detected which cosegregated with the disease in this large family with a LOD (logarithm of the odds) score of 3.3. NKX2-3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Our results provide a molecular basis for familial idiopathic intestinal varices. We provide evidence for a relationship between the molecular pathways underlying the development of the spleen and intestinal mucosal vasculature that is conserved between humans and mice. We propose that clinical management of intestinal varices, should include assessment of a functional spleen.


Assuntos
Vasos Sanguíneos/anormalidades , Proteínas de Homeodomínio/genética , Intestinos/irrigação sanguínea , Mutação , Organogênese/genética , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Baço/irrigação sanguínea , Fatores de Transcrição/genética , Vasos Sanguíneos/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Linhagem , Análise de Sequência de DNA , Sequenciamento do Exoma
14.
Psychol Med ; 50(8): 1267-1277, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155012

RESUMO

BACKGROUND: Schizophrenia is associated with robust hippocampal volume deficits but subregion volume deficits, their associations with cognition, and contributing genes remain to be determined. METHODS: Hippocampal formation (HF) subregion volumes were obtained using FreeSurfer 6.0 from individuals with schizophrenia (n = 176, mean age ± s.d. = 39.0 ± 11.5, 132 males) and healthy volunteers (n = 173, mean age ± s.d. = 37.6 ± 11.3, 123 males) with similar mean age, gender, handedness, and race distributions. Relationships between the HF subregion volume with the largest between group difference, neuropsychological performance, and single-nucleotide polymorphisms were assessed. RESULTS: This study found a significant group by region interaction on hippocampal subregion volumes. Compared to healthy volunteers, individuals with schizophrenia had significantly smaller dentate gyrus (DG) (Cohen's d = -0.57), Cornu Ammonis (CA) 4, molecular layer of the hippocampus, hippocampal tail, and CA 1 volumes, when statistically controlling for intracranial volume; DG (d = -0.43) and CA 4 volumes remained significantly smaller when statistically controlling for mean hippocampal volume. DG volume showed the largest between group difference and significant positive associations with visual memory and speed of processing in the overall sample. Genome-wide association analysis with DG volume as the quantitative phenotype identified rs56055643 (ß = 10.8, p < 5 × 10-8, 95% CI 7.0-14.5) on chromosome 3 in high linkage disequilibrium with MOBP. Gene-based analyses identified associations between SLC25A38 and RPSA and DG volume. CONCLUSIONS: This study suggests that DG dysfunction is fundamentally involved in schizophrenia pathophysiology, that it may contribute to cognitive abnormalities in schizophrenia, and that underlying biological mechanisms may involve contributions from MOBP, SLC25A38, and RPSA.


Assuntos
Giro Denteado/patologia , Esquizofrenia/genética , Esquizofrenia/patologia , Adulto , Estudos de Casos e Controles , Cognição , Feminino , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas da Mielina/genética , Tamanho do Órgão , Receptores de Laminina/genética , Análise de Regressão , Proteínas Ribossômicas/genética
15.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396450

RESUMO

The demise of retinal ganglion cells (RGCs) is characteristic of diseases of the retina such as glaucoma and diabetic or ischemic retinopathies. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted protein that mediates neuroprotection and inhibition of angiogenesis in the retina. We have studied expression and regulation of two of several receptors for PEDF, patatin-like phospholipase 2 gene product/PEDF-R and laminin receptor (LR), in serum-starved RGC under normoxia and hypoxia and investigated their involvement in the survival of retinal neuronal cells. We show that PEDF-R and LR are co-expressed in RGC and R28 retinal precursor cells. Expression of both receptors was enhanced in the presence of complex secretions from retinal glial (Müller) cells and upregulated by VEGF and under hypoxic conditions. PEDF-R- and LR-knocked-down cells demonstrated a markedly attenuated expression of anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-xL) and neuroprotective mediators (PEDF, VEGF, BDNF) suggesting that both PEDF-R and LR mediate pro-survival effects of PEDF on RGC. While this study does not provide evidence for a differential survival-promoting influence of either PEDF-R or LR, it nevertheless highlights the importance of both PEDF receptors for the viability of retinal neurons.


Assuntos
Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuroproteção , Receptores de Laminina/metabolismo , Receptores de Neuropeptídeos/metabolismo , Células Ganglionares da Retina/citologia , Neurônios Retinianos/citologia , Serpinas/metabolismo , Animais , Células Cultivadas , Proteínas do Olho/genética , Camundongos , Fatores de Crescimento Neural/genética , Receptores de Laminina/genética , Receptores de Neuropeptídeos/genética , Células Ganglionares da Retina/metabolismo , Neurônios Retinianos/metabolismo , Serpinas/genética
16.
Biomolecules ; 11(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396696

RESUMO

Oral tongue squamous cell carcinoma is one of the most prevalent head and neck cancers. During tumor progression, elastin fragments are released in the tumor microenvironment. Among them, we previously identified a nonapeptide, AG-9, that stimulates melanoma progression in vivo in a mouse melanoma model. In the present paper, we studied AG-9 effect on tongue squamous cell carcinoma invasive properties. We demonstrated that AG-9 stimulates cell invasion in vitro in a modified Boyen chamber model. It increases MMP-2 secretion, analyzed by zymography and MT1-MMP expression, studied by Western blot. The stimulatory effect was mediated through Ribosomal Protein SA (RPSA) receptor binding as demonstrated by SiRNA experiments. The green tea-derived polyphenol, (-)-epigallocatechin-3-gallate (EGCG), was previously shown to bind RPSA. Molecular docking experiments were performed to compare the preferred areas of interaction of AG-9 and EGCG with RPSA and suggested overlapping areas. This was confirmed by competition assays. EGCG abolished AG-9-induced invasion, MMP-2 secretion, and MT1-MMP expression.


Assuntos
Metaloproteinase 14 da Matriz/genética , Metaloproteinase 2 da Matriz/genética , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Elastina/genética , Elastina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Peptídeos/genética , Peptídeos/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
17.
BMC Infect Dis ; 19(1): 947, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703560

RESUMO

BACKGROUND: In the pre-vaccine era, invasive disease with Haemophilus influenzae, type b (Hib) commonly presented with osteoarticular involvement. Haemophilus influenzae, type a (Hia) sepsis is a rare but emerging problem in recent years. Here, we report a case of sepsis with concomitant osteoarthritis due to Hia that was the presenting infectious disease manifestation of isolated asplenia in a young child. This unique observation adds to our understanding of sepsis and asplenia in children. CASE PRESENTATION: A five-year-old girl developed acute Hia bacteremia and sepsis. The patient developed arthritis shortly after onset of septic shock. Arthrocentesis was culture-negative, but given the difficulty differentiating between septic and reactive arthritis, prolonged antibiotic administration was provided for presumed osteoarticular infection, and the patient had an uneventful recovery. The finding of Howell-Jolly bodies on blood smear at the time of presentation prompted an evaluation that revealed isolated congenital asplenia. Evaluation for known genetic causes of asplenia was unrevealing. Investigation by the Minnesota Department of Health revealed an emergence of Hia infections over the past 5 years, particularly in children with an American Indian background. CONCLUSIONS: Hia is an important pathogen in the differential diagnosis of invasive bacterial infections in children and shares overlap in clinical presentation and pathogenesis with Hib. Invasive Hia disease can be a presenting manifestation of asplenia in children. Hia is an emerging pathogen in American Indian children.


Assuntos
Adesinas Bacterianas/sangue , Bacteriemia/microbiologia , Doenças Transmissíveis Emergentes/microbiologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/isolamento & purificação , Baço/anormalidades , Antibacterianos/uso terapêutico , Pré-Escolar , Feminino , Infecções por Haemophilus/tratamento farmacológico , Vacinas Anti-Haemophilus , Humanos , Índios Norte-Americanos , Minnesota , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Choque Séptico/microbiologia , Resultado do Tratamento
18.
Exp Cell Res ; 379(1): 30-47, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894280

RESUMO

Pancreatic cancer is one of the most malignant tumors. Invasion and metastasis can occur in the early stage of pancreatic cancer, contributing to the poor prognosis. Accordingly, in this study, we evaluated the molecular mechanisms underlying invasion and metastasis. Using mass spectrometry, we found that Integrin alpha 6 (ITGA6) was more highly expressed in a highly invasive pancreatic cancer cell line (PC-1.0) than in a less invasive cell line (PC-1). Through in vitro and in vivo experiments, we observed significant decreases in invasion and metastasis in pancreatic cancer cells after inhibiting ITGA6. Based on data in TCGA, high ITGA6 expression significantly predicted poor prognosis. By using Co-IP combined mass spectrometry, we found that ribosomal protein SA (RPSA), which was also highly expressed in PC-1.0, interacted with ITGA6. Similar to ITGA6, high RPSA expression promoted invasion and metastasis and indicated poor prognosis. Interestingly, although ITGA6 and RPSA interacted, they did not mutually regulate each other. ITGA6 and RPSA affected invasion and metastasis via the PI3K and MAPK signaling pathways, respectively. Inhibiting ITGA6 significantly reduced the expression of p-AKT, while inhibiting RPSA led to the downregulation of p-ERK1/2. Compared with the inhibition of ITGA6 or RPSA alone, the downregulation of both ITGA6 and RPSA weakened invasion and metastasis to a greater extent and led to the simultaneous downregulation of p-AKT and p-ERK1/2. Our research indicates that the development of drugs targeting both ITGA6 and RPSA may be an effective strategy for the treatment of pancreatic cancer.


Assuntos
Integrina alfa6/genética , Sistema de Sinalização das MAP Quinases/genética , Metástase Neoplásica/genética , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases/genética , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Transdução de Sinais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética
19.
Tissue Cell ; 56: 71-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30736907

RESUMO

The interactions between cells and the extracellular matrix (ECM) play a major role in normal and pathological conditions. The ECM can modulate several biological functions including cell proliferation, adhesion, differentiation and survival through its interactions with cell receptors. Laminins are one of the most important glycoproteins present in basement membranes, a type of ECM. The pattern of expression of its different isoforms depends on the spatiotemporal organization of each tissue. While integrins are the most studied laminin receptors, other non-integrin laminin receptors are also involved. This review focuses on two particular non-integrin laminin receptors in the epithelial context: dystroglycan and 37/67 laminin receptor (37/67LR). Dystroglycan is a two-subunit protein discovered in the muscle as part of the dystrophin-associated glycoprotein complex. This protein can also be found in many epithelia where its roles are variable. The 37/67LR is a still incompletely understood laminin receptor that is important to regulate intestinal epithelial cell function and could be involved in various pathological conditions.


Assuntos
Proliferação de Células/genética , Distroglicanas/genética , Laminina/genética , Receptores de Laminina/genética , Membrana Basal/metabolismo , Diferenciação Celular/genética , Células Epiteliais/metabolismo , Epitélio/metabolismo , Matriz Extracelular/genética , Humanos , Integrinas/genética
20.
Biochimie ; 156: 92-99, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315854

RESUMO

There is a putative precursor to mature receptor relationship between 37 Laminin Receptor (LR) and 67 LR. As such, the pair are frequently referred to as a single entity, the 37/67 kDa Laminin Receptor (37/67 LR) and 67 LR was identified as a laminin binding entity. 37/67 LR has been of clinical interest for many years, as 37/67 LR is a prognostic indicator for many cancers including breast, lung, colon, and prostate. However, the genesis of 67 LR is controversial, and confounded by its stability under SDS-PAGE conditions, a lack of splice variants, and the existence of post-translational modifications that cannot account for the mass discrepancy between 37 and 67 LR. In the present work, we mutated potential SUMO motif sites (Lysine residues) in 37 LR and generated a series of 37 LR-expressing plasmids with a C-terminal histidine tag. We report an inability to detect 67 LR formation, suggesting that SUMOylation does not appear to directly occur at the lysine residues proposed. However, the work revealed that these lysine mutations still appear to be important and can impact the fate and function of 37 LR, by impairing half-life and steady state pre-mRNA levels. These results suggest that the Lys residues within putative SUMO motifs of 37 LR are important for 37 LR function.


Assuntos
Receptores de Laminina/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína SUMO-1/metabolismo , Sumoilação , Motivos de Aminoácidos , Linhagem Celular Tumoral , Humanos , Lisina/genética , Lisina/metabolismo , Mutação , Receptores de Laminina/genética , Proteínas Ribossômicas/genética , Proteína SUMO-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...